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1. Project Overview  
In 2019, a group of computer and social scientists began a project to ‘converge’ the two 

disciplines, with the aim of harnessing data from social media to improve our understanding of 
human behavior. People all over the world use social media, search engines, smart devices, and 
other technologies that record their moment-to-moment behaviors (often called “digital traces”). 
Social media, in particular, provide a massive amount of information on the everyday activities, 
opinions, thoughts, emotions, and behaviors of individuals, groups, and organizations in near 
real-time. Today, most adults in the US use some form of social media (Perrin & Anderson, 
2019) to share and discuss topics as wide-ranging as politics, employment, parenthood, leisure 
activities, travel, sports, and health. As such, these platforms provide new ways of gathering 
information on constructs relevant to all social science fields.   

Expanding the availability and utility of this extremely rich but still underutilized set of 
data sources in the social sciences requires attention to the unique features of these data. Unlike 
many forms of standard social science data, social media data do not have a structure that is the 
product of a designed process initiated by the researcher to answer specific hypotheses or 
questions. Instead, such observational data are provided “as is,” which often means they are raw, 
complex, and highly sparse in nature. Moreover, these data introduce unique bias concerns not 
typically at issue in traditional social science methods, including a good deal of uncertainty about 
who generated the data, or what population those data represent. This organic nature of the data, 
along with their magnitude and complexity, require methods for managing, structuring, and 
understanding them in order to create useful measures for social scientific inquiry. Appropriate 
methods for doing so are most commonly found within the toolbox of computer scientists, 
making a convergence of computer science and social science methods potentially very fruitful. 

While employing methods from computer science to wrangle digital trace data in order to 
answer social science questions has enormous potential, it also presents a number of challenges. 
First, neither computer scientists nor social scientists are especially well versed in the others’ 
methods. So before social scientists can begin using ideas and algorithms from computer science, 
they need to learn how to work with large-scale unstructured organic data and understand the 
general principles, tools, and methods used by computer scientists. Likewise, computer scientists 
can reach inaccurate conclusions if they fail to understand key considerations and objectives 
within social science research that may not traditionally apply in computer science. Second, it is 
often unclear who or what, exactly, are behind the accounts that produce the data appearing in 
social media data sets, and how the entities creating trace data might relate to the larger groups of 
people that social science researchers would like to understand. For many questions, social 
media data contain information about the presence of a behavior but not about why or under 
what circumstances that behavior may have occurred (or may not have occurred) – which is a 
key area of focus for many social scientists. Third, ethical questions around the use of digital 
trace data in research contexts require collaboration across these disciplines. Understanding what 
we need to know about the data that are gathered, what other data are needed to supplement them 
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to answer central research questions, and how to do so responsibly is critical for digital trace data 
to live up to their full potential. These are just some of the challenges involved when social 
media data are used for social science research.  

The advantages to social science in effectively harnessing social media data are clear. But 
for computer scientists too, this convergence holds great opportunity. Designing algorithms with 
a new set of constraints and optimizing existing algorithms for this large-scale, real-time domain, 
while addressing privacy, bias, misinformation, and algorithmic fairness concerns will also 
advance computer science research.  

To initiate this convergence, our group planned a set of topical meetings bringing 
together social scientists from multiple disciplines, including economics, psychology, political 
science, communications, sociology, and survey methodology with data scientists and computer 
scientists with the goal of creating a common set of methodologies for how to study complex 
human behaviors using social media data in a scientifically rigorous manner. The topics of these 
meetings address each stage of the research process as we have defined it: study design; data 
acquisition, sampling, and preparation; measurement and feature engineering; model 
construction; analysis, and visual storytelling. At each meeting, we also discuss criteria for the 
responsible conduct of research with social media data.8  

In this paper, the fourth in a series of white papers, we provide a summary of the 
discussions and future directions that came from the topical meeting that focused on model 
construction with social media data. A particularly interesting aspect of this meeting was, in our 
view, discussion of the different disciplines’ requirements and approaches to modeling and the 
different considerations that are used to assess model fit.  

2. General Modeling Challenges 
There are a number of characteristics that make modeling social media data difficult. 

First, the stimulus for conversation is unclear. Social media users are a self-selected group. 
Language and behavior are affected by many factors including age, cultural context, and 
socioeconomics. Next, social media conversations do not always have the same meaning over 
time. There is temporal variation which can differ across subgroups on the platform. Third, 
platform design and algorithms influence user behavior, and the ways in which behaviors are 
influenced by platforms can be difficult to theorize about or detect. Also, social media contains 
natural language, which is inherently challenging to model.  Mapping the text of a tweet to some 
notion of what the author "means," even taking context into account, forces us to make a huge 
number of simplifying assumptions. Finally, many statistical and machine learning models 
assume relatively clean data, but social media has repetitive data, missing data, a vast, ever-
changing vocabulary, and high levels of sparsity, requiring us to rethink how we can use existing 
models and what conditions are the norm for new ones. 

                                                
8 We note that this introduction section is similar for all the white papers.  
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While all of these challenges need to be addressed, there are a few worth highlighting 
because of their impact on high-quality social science research. We begin with the sparsity and 
data quality challenges social media data pose. Because the properties of social media data are 
not well understood (described later), new types of error (possibly non-random and biased) are 
accumulating at every stage from sampling to measurement construction to model design. It is 
unclear how one should measure this compounding error since no standards have been developed 
to understand and account for it. (We discuss issues of error propagation in Section 5.) Second, 
different social media platforms have different levels of data quality and access. Part of the 
variability stems from the different purposes and designs of the platforms. Part of it results 
because some companies work harder at removing poor quality information, e.g. spam, and 
content derived from machine-driven accounts like bots, while others allow poor quality 
information to permeate through platform conversations. Therefore, the reliability of the data and 
the data producers need to be better understood. Further, when generating features (variables or 
measurable properties) for data mining or machine learning models, the social media feature 
space is sparse, meaning it is a high-dimensional variable space with a lot of missing values or 
zero values. For many machine learning algorithms, this sparsity reduces their ability to build an 
accurate and/or a robust model.  

The next challenge we highlight is the variability around how and why computer 
scientists and social scientists use models. Computer scientists generally build models for 
prediction. Their goal is to develop mathematical and computational models that can be used to 
describe data, e.g. clustering and topic modeling, or to make predictions using different types of 
data, e.g. support vector machines and multi-arm bandit learning. In contrast, social scientists 
generally use models to test issues of causality or estimate the nature and strength of associations 
that are typically hypothesis driven. Their goal is to develop a theoretical model that can be 
tested using data. These ideas are discussed in greater detail in the next section. However, we 
want to highlight that the challenge of model design with social media is even greater because 
the modeling goals of these two disciplines differ.    

Finally, the hallmark of high-quality research is replication. However, because platforms 
remove accounts and adjust account information regularly, it is complicated to replicate studies 
that use social media data. In many cases, exact replication is impossible. Therefore, as a 
community, we need to think through the value of data snapshots for research and the viability of 
them given platform terms of service.  

3. Modeling Taxonomy and Background  
Each field has its own interpretation of what a ‘model’ is. Scientists use conceptual, 

mathematical, theoretical, analytical, physical, analogical models -- to name just a few. The 
degree to which these different classes of models are used varies across disciplines and modeling 
purposes. This creates an inherent difficulty for holding discussions of modeling in 
interdisciplinary spaces.  
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In order to establish a common language, in this paper we use a simple taxonomy that we 
believe captures a broad range of analytics relevant to social media research as well as the broad 
range of disciplines contributing to that research. We acknowledge that this taxonomy, much like 
any such scheme, is a simplification and not reflective of all research in this area; indeed, some 
scholars voice skepticism that models belong to distinctive categories and claim that anything 
can be a model (Frigg & Hartmann, 2020).  We hold the position that taxonomies of models, 
much like models, are all wrong, but some are useful; and while we structure the rest of our 
paper around the simple taxonomy we are proposing, we also discuss the limitations of our 
proposed structure in later sections.  

Our simple taxonomy categorizes models under four categories: descriptive (Section 3.1), 
diagnostic/explanatory (Section 3.2), predictive (Section 3.3), and prescriptive (Section 3.4). 
Below, we provide a short description for each of these categories and present examples of 
different statistical and computational models that fit into these categories as they relate to social 
media data. We note that the models presented in each category may be useful for other 
categories. However, we have placed them in the category that is most applicable given the 
suggested taxonomy. We can of course provide only brief introductions to statistical and 
computational approaches here; but we provide citations to both textbook and applied examples 
for different approaches. Readers interested in more detail will, we hope, find these sources 
valuable. 

Naturally, there are a number of other useful categorizations that are not as deeply 
explored here. For instance, models can be generative or discriminative. Discriminative models 
attempt to learn by identifying decision boundaries between groups. This tends to map to 
learning conditional probability distributions that distinguish groups. Generative models focus on 
determining the generation process of the data and learn the joint probability distribution.  
Generative models make modeling assumptions which allow them to use regularities or patterns 
in input data to generate new examples that plausibly could have been drawn from the original 
data set. This is another reasonable way to analyze different models and when useful, we refer to 
this taxonomy as well.  

3.1 Descriptive Models 

Descriptive models aim to describe what happened in the past. These models are most 
useful when exploring data to understand their structure or to determine the characteristics of the 
individuals or groups of individuals generating the data. The input to such models commonly 
includes a set of variables (X) that can be used to describe the cases or units that comprise the 
data. Descriptive models commonly create a subset or new group of either variables or cases that 
serve to simplify the data or to describe some interesting characteristic(s) about the data. 
Examples of models used for descriptive analysis include clustering, topic modeling, and 
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anomaly/outlier9 detection. We select these examples because they are particularly useful for 
social media data analysis.  

Clustering: The goal of clustering is to identify similar cases or units (typically 
individuals or objects) to create clusters or groups based on shared features/attributes/variables 
(Tan et al., 2005). Each cluster contains cases that are more similar to others within the group 
than to those outside the cluster. Grouping cases by a single known feature, e.g. gender, is not 
viewed as clustering, but rather as data segmentation since only one feature is used. Instead, 
clustering algorithms focus on efficiently grouping individuals using multiple features.   

Many different types of algorithms have been created for clustering. For example, 
hierarchical clustering models use different notions of distance to build a hierarchy of clusters, 
where each step involves identifying which clusters are closest to each other and merging them 
into larger clusters (Murtagh & Contreras, 2011; Murtagh & Contreras, 2017). One way these 
models have been used to organize social media data is through hierarchical agglomerative 
clustering, used to identify clusters of tags used by individuals in social networks (Shepitsen et 
al., 2008) or as a way to cluster misinformation memes on Twitter (Ferrara et al., 2013). K-
Means clustering also uses distance, but instead partitions the units into k clusters, where each 
individual is added to the cluster with the closest cluster centroid, thereby minimizing the within 
cluster variance (Lloyd, 1982). Variants of k-means have been used to cluster social media users 
with respect to textual similarity (e.g. Miller et al., 2014). Both hierarchical and k-means 
clustering are considered classic clustering methods that are used across disciplines. Another 
clustering approach is distribution-based clustering based on a statistical distribution, typically a 
Gaussian mixture model (Hastie et al., 2009). Each cluster contains points that follow a Gaussian 
distribution that is part of the Gaussian mixture. This model has been used for clustering words 
from posts on social media and in newspapers to understand core conversation and article themes 
(Yin & Wang, 2014). 

Density-based clustering models search for dense regions in a noisy data space by 
labeling points based on their closeness to other points. Those points that can be easily reached 
are put in the cluster and those that cannot be easily reached by any group are considered outliers 
and are not added to any clusters (Tan et al., 2005). A variant of DBSCAN, a popular density-
based clustering algorithm, has been used to cluster posts based on geotagging (Liu et al., 2018).  
These types of algorithms that remove noise can be important for social media domains. Finally, 
there are many clustering or community detection algorithms that create clusters based on 
network connectivity. Here, nodes are grouped together if they have more connections to nodes 
within the cluster than to nodes outside the cluster. A large number of models exist ranging from 
models created from local hierarchical clustering methods (Girvan & Newman, 2002) to ones 
that are based on more global optimizations that identify communities by finding groups of 

                                                
9 While anomalies and outliers are not synonymous, for the purposes of the methods discussed here, they can be 
used interchangeably.  
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nodes with more connections than would be expected if the network was random (Newman, 
2006).  All of these methods also have variants that identify time varying clusters and 
overlapping clusters (see Xu & Wunsch, 2005; Xu & Tian, 2015; Hruschka et al., 2009 surveys 
for more information). 

Topic models: Topic modeling is a variant of basic clustering that focuses on finding 
clusters of words and phrases that can be grouped together to represent topics within a document 
or text collection. (Note that our unit of analysis has shifted here -- in the previous section we 
focus on clustering of individuals, while here we consider topic modeling of text.)  There are a 
large number of different topic models that have been proposed (see Qiang et al., 2020 for recent 
survey). The most well-known generative model for topic modeling is Latent Dirichlet 
Allocation (LDA) (Blei et al., 2003). This algorithm assumes Dirichlet-multinomial distributions 
for both the words and the topics. While it works well on more traditional documents, it does not 
capture topics as well in noisy data domains with short texts, i.e. social media. A number of LDA 
variants have been proposed to address the challenges of noise and short documents (Wang et al., 
2012; Quan et al., 2015; Nguyen et al., 2015; Moody, 2016; Hong & Davison, 2010). These 
models have been used extensively on social media. For example, Surian and colleagues uses 
both topic modeling (LDA) and community detection to cluster opinions about human 
papillomavirus (HPV) vaccines on Twitter (Surian et al., 2016).  Graph-based topic models have 
also had success, particularly for temporal topic modeling (Churchill et al., 2018; Cataldi et al., 
2010; Churchill & Singh, 2020). These models build networks or graphs, where each node 
represents a word or phrase in the document collection and edges exist between nodes that co-
occur within the same post. Then topics are identified by finding ways to partition the graph into 
groups using variants of community detection algorithms. Here each group represents a different 
topic. In the context of social media data, for example, graphs have been used to build topics for 
the 2016 US presidential election (Churchill et al., 2018; Churchill & Singh 2020).   

Anomaly detection: Anomaly detection or outlier detection focuses on identifying rare 
observations, objects, or events. Classic applications include fraud detection, fault detection, and 
health monitoring. They have also been applied in the analysis of social media on important 
topics such as detection of spam, fraud, and bullying (Wang et al., 2012). This problem is 
formulated as both an unsupervised and supervised learning problem. Unsupervised approaches 
do not rely on training data and assume that the majority of data define “normal” while 
deviations from this majority can be assumed to be anomalous. The classic anomaly detection 
techniques are density based (Tan et al., 2005). They identify neighborhoods for each 
observation and identify outliers by finding observations that have a smaller density than their 
neighbors or a smaller density than an expected density for the data set. Computational models 
vary in how they define a neighborhood and how they measure what is close and what is further. 
For event detection or other time series anomaly detection methods, algorithms will look for 
bursts in activity. For example, one can use bursts in conversation discussion about a particular 
topic or occurrence to identify events on Twitter (Wei & Singh, 2017), or use methods to 
aggregate hidden information during a crisis (Leavitt & Robinson, 2017).  Supervised 
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approaches rely on training data that include known normal and anomalous examples. Because 
of the volume of data and the difficulty of finding anomalous examples (maintaining class 
balance), creating a training data set can be labor intensive. One example where supervised 
anomaly detection has been used is sarcasm detection (see Joshi et al., 2017 for a survey of semi-
supervised and supervised methods). However, the class imbalance and the construction of the 
training data can have large impacts on performance results (Abercrombie & Hovy, 2016).  

3.2 Predictive Models 

These models are useful when aiming to predict what will happen in the future or what 
would have happened in a counterfactual past. The input to such models commonly includes two 
types of data: 1) variables (X) that describe the data, and 2) the outcomes (Y) observed for 
different predictors (X). Predictive models describe the relationship between X and Y; and this 
can in turn be used to predict Y (Ŷ) from X for future values.  

Researchers typically need to make two choices when it comes to determining which 
predictive model to use: a) the set of variables that should be part of the model and b) the 
functional form of the relations considered. The first task is feature engineering, and social media 
data provides both an opportunity and a challenge. Given the vast amount of data available, the 
potential feature space is large. The second challenge is to pick the specific model. Example 
predictive models include regression, support vector machines (SVM), decision trees, and 
random forests. These models are supervised learning models, meaning that they need labeled 
training data to inform their predictions. Here we briefly describe models that have been used for 
different predictive tasks related to social media. We refer the reader to Hastie et al. (2009) for a 
more detailed discussion. 

We pause to mention that when computer scientists write papers about predictive models, 
they typically compare results from multiple machine learning algorithms to gain insight about 
unique characteristics of the data set. In contrast, social science papers typically select a model 
and then use that as a way to support a particular theory of interest. This difference is important 
to note because the examples we present draw from both communities, and there are fewer 
examples of many of the machine learning techniques computer scientists are developing in 
social science research.   

Linear regression and variants: Regression models are the most common models in the 
social sciences. The goal of regression is to model the relationship between a dependent variable 
(Y) and one or more independent variables (Xs). The outcome variable of interest dictates what 
type of regression needs to be performed. If it is a continuous variable, linear regression can be 
used. If it is a binary outcome, logistic regression is most commonly used. If the outcome 
variable is a value between 0 and 1, beta regression may be preferred. Regression is commonly 
fitted using the least squares approach but other loss functions are also possible. For instance, 
especially in a setting with a large number of independent variables, one might want to employ a 
penalized version of the least squares cost function, such as ridge regression (L2-norm penalty) 
or lasso regression (L1-norm penalty) (Hastie et al., 2009).   
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Regression models are also used for time series analysis. Most time-series econometrics 
is regression-based, and analyses of monthly, weekly, daily, or even hourly aggregates of social 
media content may be analyzed in this way. As another example, multilevel regression 
(hierarchical linear models) can be used to account for the data’s hierarchical structure. These 
models can be particularly useful when the number of observations one has per unit is non-
uniform. This is indeed the case for social media data where a small number of highly active 
users account for a large fraction of the content. As such, these models are frequently used in 
social media studies (e.g. Budak & Watts, 2015; Rajadesingan et al., 2020). 

Linear and logistic regression have been used in a large number of social media studies, 
everything from personality trait prediction using user Facebook activity data as the predictors 
(Bachrach et al., 2012) to predicting political interactions associated with the 2016 US 
presidential election using posting behavior on Reddit (De Francisci Morales et al., 2021) to 
using photographs on Instagram to predict markers of depression (Reece & Danforth, 2017). 

Support vector machine (SVM): SVMs are typically used for classification to predict a 
binary outcome. SVM is closely related to classical regression. The distinction is in their loss 
function. For instance, linear regression uses least squares, while linear SVM uses hinge loss. 
The objective of the model is to place points into the two classes in such a way that the “width” 
of the hyperplane (the decision boundary) between the two classes is maximized. The researcher 
can also choose from different kernel functions, depending on the task at hand. For instance, 
while a linear kernel can perform well in cases where there are no significant interactions 
between the independent variables, a different kernel, say a quadratic one, might be preferred 
when the interactions are significant. SVMs are generally more highly effective on non-linear 
high dimensional data. Different studies have used SVMs (and other methods) to predict health 
conditions like depression (Aldarwish & Ahmad, 2017; De Choudhury et al., 2013) and infer 
demographics (Chen et al., 2015). 

Decision trees: Decision trees are another type of model that be used to perform 
classification (predict a class value) or predict a real number. The constructed model basically 
encodes a set of consecutive rules that can be used to predict an outcome. These rules can be 
viewed as a set of decisions related to subsets of variables that need to be made to reach an 
outcome. Algorithms for building decision trees choose variables that best split the data into 
subgroups containing similar features and outcomes. Different algorithms use different metrics 
for determining the quality of a “good” split, e.g. information gain. Decision trees are easily 
interpretable, handle missing data well, and are very fast. This presents an important advantage 
for social media data that can be rather large and has missing data. Interpretability is also 
important for social science research. However, such models can be prone to overfitting training 
data. There are strategies to combat that, e.g. setting a maximum tree depth, but they can 
introduce bias error. Because of the overfitting issue, these models are not used as extensively 
with social media data, when compared to other models, they do not always perform as well. For 
example, researchers use a number of classifiers including decision trees to predict information 
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credibility on Twitter (Castillo et al., 2011). When it performs well, it is useful for interpreting 
the most important features.  

Random forest: Random forest models are ensemble methods for classification or 
regression. Intuitively speaking, these models use samples of the training data to construct a set 
of decision trees (weak learners). To make the final prediction, the random forest model outputs 
a majority vote (the mode class across all trees) for classification or the average of the predicted 
values for regression. These models are highly effective when the training data are imbalanced or 
contain missing values. They tend to work better than traditional decision trees on high 
dimensional data, but still may overfit data. Random forest models have been applied effectively 
to social media text data for spam detection (Chu et al., 2012; McCord & Chuah, 2011). 

Naive Bayes: Naive Bayes is a generative model using Bayes theorem to model the 
posterior probability P(Y|X) using P(Y), P(X), and P(X|Y). It does this by assuming that the 
predictors are independent of each other, i.e. each feature in X is unrelated to other features in X. 
Even though this may not be true, in practice this assumption is reasonable for many data sets. It 
has performed well for document classification tasks and therefore, may be useful for some 
social media classification tasks. Compared to logistic regression, this approach has a higher bias 
but lower variance. Under what circumstances should a researcher prefer one over the other? 
Past work provides some insights (Ng & Jordan, 2002). Logistic regression performs better than 
Naive Bayes for large data sets. However, the generative model (Naive Bayes) reaches its 
asymptote faster. For instance, Ng and Jordan observed that some of the 15 data sets from the 
UCI ML repository did not have enough samples for logistic regression to perform better than 
Naive Bayes (Dua & Graff, 2019). As an example, Dilrukshi and colleagues use emoticons in a 
Naive Bayes model and an SVM model to predict sentiment (Dilrukshi et al., 2013). 

Neural network models: While the previous mentioned models are examples of classic 
supervised learning models, neural network models have gained popularity recently, particularly 
in the form of deep learning models. Neural network models are inspired by the way a human 
brain works. These models are composed of layers of simple, connected nodes that each compute 
a function using different combinations of the input data, and ultimately learn to approximate an 
underlying mapping function from the inputs to the output. Each layer focuses on different 
patterns of the input data and learns rules based on these patterns. This is accomplished by 
learning weights and model parameters given a specific network structure (architecture). 
Typically, the optimization problem being solved is non-convex. Neural models have been 
particularly useful in modeling images and text. A more detailed treatment of the topic can be 
found in Aggrawal (2018).  

There are several neural network architectures with different features. One’s choice of the 
exact neural network model depends on the application, but a few commonly used ones are 
multilayer perceptrons (MLP), convolutional neural networks (CNNs), recurrent neural networks 
(RNNs). MLPs are feed-forward artificial neural networks. This means that information only 
flows in one direction through the network. They consist of three main layers: input layer, hidden 



The Future of Quantitative Research in Social Science | 12  

layer, and an output layer, where each node or neuron in one layer is connected to all the neurons 
in the next layer (fully connected).  While different learning techniques can be employed on this 
network, one well known technique is backpropagation. During training, output values are 
compared to expected output values and information about the error is used to help adjust the 
weights of the nodes in order to obtain output values that are closer to the expected outputs. 
MLPs are used in classification and regression. Because MLPs are fully connected, they 
sometimes overfit data. CNNs attempt to combat this by having multiple hidden layers grouped 
into three blocks—convolutions, pooling, and fully-connected layers. The first two blocks focus 
on feature extraction and the last block maps the features to the output. CNNs are commonly 
used in image recognition, image classification, and object detection. RNNs allow information 
from prior inputs to influence current inputs and outputs, allowing for easier modeling of 
sequential data. This “memory” distinguishes it from the previous two models. RNNs are 
particularly useful for natural language processing and speech recognition applications. All of 
these models have been used successfully for image classification tasks (Wang et al., 2016; 
Guillaumin et al., 2009). As more social media image training data sets become available (Ulges 
et al., 2010; Deng et al., 2009), we may begin to see more of these methods used for social 
science related research.  

A challenge with using many of these models for text tasks is that they need large 
amounts of training data and a large compute infrastructure to build. To help mitigate this 
challenge, computational linguists and computer scientists have been building general purpose 
language models. Use of these models has been shown to improve the prediction performance in 
NLP tasks over classic machine learning methods described earlier in this section. These 
language models are built using millions or billions of examples of raw text. The general idea is 
the following. While words alone give researchers insight into the text, understanding contexts 
surrounding words and identifying words having similar contexts can be important for many 
machine learning tasks. While this knowledge of word contexts can be generated by experts in 
dictionaries like WordNet (Fellbaum, 1998), or by using clustering algorithms that group similar 
words (Brown et al., 1992), another approach is to create word vectors where each dimension of 
the vector maps to the frequency with which a word occurs in a specific context (Smith, 2020).  
This allows algorithms to consider the distribution of contexts associated with any word. Word 
representations can be associated with words irrespective of contexts. Therefore, language 
models that use word vectors can be built considering different amounts of context. Non-
contextual models generate a single word representation (word embedding) for each word even if 
a word can be used in multiple contexts. Word2Vec (Mikolov et al., 2013), Glove (Pennington et 
al., 2014), and FastText (Joulin et al., 2016) are examples of non-contextual word embeddings. 
Contextual models generate word representations based on other words in the sentence. BERT, 
the Bidirectional Encoder Representations for Transformers, is a contextual model. It is widely 
used and has been shown to provide state-of-the-art results on a wide variety of natural language 
processing tasks (Devlin et al., 2019). These language models can perform relatively well with 
some task-specific fine-tuning. Some relevant prediction tasks that have made use of these 
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language models with social media data sets include demographic inference (Liu et al., 2021), 
stance detection (Kawintiranon & Singh, 2021; Ghosh et al., 2019), sentiment (Tian et al., 2020), 
and bot identification (Kudugunta & Ferrara, 2018). 

Finally, while we mention each predictive model in isolation above, various studies 
combine models through ensemble or stacking (Tang et al., 2014) approaches. A voting 
ensembler method uses votes (e.g. predicted as 0 or 1) from multiple classifiers and applies 
majority voting. A stacking approach combines multiple models through a second level meta-
classifier where the prediction outputs by the level-1 classifiers are used as inputs to the meta-
classifier. These techniques have been used in past social media work to collect and classify 
social media content (King et al., 2017) and identify social movement organizations (Bozarth & 
Budak, 2020), among others. 

3.3 Diagnostic/Explanatory Models 

These models aim to identify the relationship between variables -- i.e., relationship 
between X and Y or how X explains Y -- without any interest in the prediction of Y per se.  
Predictive models aim at estimating Ŷ (predicted Y values) when a new observed X is collected 
while the explanatory models aim at estimating 𝛽"  (estimates of model coefficients), the effect of 
X on Y. In other words, while the input to the explanatory models is similar to predictive ones 
(X’s and Y’s), the goal is not to predict the value of the dependent variable Y (Ŷ) but to 
understand the relationship between X and Y (𝛽") in terms of the coefficient for any independent 
variable.  

Researchers often use the set of methods listed under predictive, and to some extent 
descriptive, models also for explanatory goals. Standard regression techniques are the most 
common approach to explanatory analysis. Regression models do not, on their own, identify 
causality. In many instances, causal claims depend on the assumption that the Xs are ‘causally 
prior’ to the Ys. For instance, we might theorize that some demographics drive social media 
behavior because those demographics are determined prior to, and exogenously from, that 
behavior. Most cross-sectional survey-based work relies on this approach to causality, for 
instance (Hughes et al., 2012; Orchard et al., 2014), as does a good amount of social media 
analysis (see Boulianne, 2015). Some research designs or analytic approaches are better 
equipped to test such causal mechanisms, including quasi experimental designs, e.g. interrupted 
time series design (Budak et al., 2017), regression discontinuity analysis, propensity score 
matching (Aral et al., 2009; Zhang et al., 2017a), and/or the use of instrumental variables 
(Bollen, 2012). In each of these cases, the objective is to model Y as a function of some set of 
independent variables, where the latter are regarded as possible ‘explanations’ of Y but also 
correlated with the Xs. In other cases, researchers are not necessarily interested in a direct causal 
relationship between the independent and dependent variables, but instead interested in how the 
independent variable influences one or more mediator variables, which in turn influences the 
dependent variable. These are solved using mediation analysis (e.g. Zhang et al., 2017b), which 
is used to model complex systems. 
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3.4 Prescriptive Models 

These models are helpful in prescribing optimal actions to achieve a particular preferred 
outcome. The input to such models commonly includes three types of data: 1) variables (X) that 
describe the data, 2) action (A) taken, and 3) the outcomes (Y) observed for different values of X 
and actions A. Action A can be thought of as an intervention. The goal of this family of models 
is to prescribe actions that optimize (maximize or minimize) Y given X. Examples include 
reinforcement learning, agent-based modeling, and network optimization. 

Reinforcement learning: The premise of reinforcement learning differs from 
unsupervised and supervised learning. The learning problem is setup with an agent or set of 
agents that make decisions within an uncertain environment and a policy that serves as the rules 
of the learning task. The agent is an automated unit that receives observations and a reward from 
the environment and sends actions to the environment. Policy refers to the mapping that selects 
actions based on the observations from the environment (inputs). Through trial and error, the 
agent makes decisions. When a good decision is made, the agent is rewarded. When a bad 
decision is made, it is punished. In this way, the model learns to perform the task so as to 
maximize the expectation of a long-term reward. Successful reinforcement learning models are 
able to effectively balance exploring new parts of the search space (learning more) against 
exploiting the knowledge they have.  Classic examples of using reinforcement learning include 
playing games (Mnih et al., 2013) and training autonomous cars (Sallab et al., 2017). Some 
newer examples that are particularly relevant to social media include using reinforcement 
learning to counter misinformation (Kaiser et al., 2020), to adaptively collect data online (Li et 
al., 2016), and to identify bots (Luceri et al., 2020). The reason it is effective in these spaces is 
because the model is adaptable, i.e. the computer learns from its own mistakes. In the context of 
a prescriptive analysis, once the agent optimizes for the conditions that exist, e.g. detecting bot 
behavior, the model can be adapted to learn how bots change their behavior over time, helping to 
reduce their influence on the platform. For a survey of foundational research on reinforcement 
learning, we refer the reader to Kaelbling et al. (1996). 

Network optimization: Network optimization models attempt to use networks to solve 
different decision problems efficiently. A network or graph contains a set of nodes or vertices 
and a set of edges. These edges may have direction or weights depending on the specific network 
constraints. While there are many different network optimization problems, one that is useful in 
the context of social media is maximizing spread (of a behavior) or minimizing spread (of a virus 
or misinformation), i.e. a network diffusion process. In this problem, the edges or relationships 
can influence the behavior of a node. Each node that is “active” has a probability of being 
influenced by other active nodes or of influencing other active nodes. By simulating this 
diffusion process, researchers can model how information/opinion diffuses and through what 
paths. These models and optimization tasks have important implications for observing and 
affecting what societies care about (Agrawal, 2011). These approaches can help with the 
prescriptive task of attempting to maximize the spread of information (Kempe et al., 2003), place 
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sensors to monitor and detect diffusion (Leskovec et al., 2007), or limit/slow down the spread of 
diffusion (Budak et al., 2011) by understanding how the diffusion model must be changed to 
change the overall spread through the system (see the survey by Guille and colleagues for more 
information (Guille et al., 2013)).   

Agents-based models: Agents-based models (ABM) consist of a group of autonomous 
decision-making entities or agents that model a system. Agents are simulated within the system 
to understand how the system will change when different conditions are specified. Similar to 
reinforcement learning, agents make decisions based on a set of rules. ABM models tend to 
include multiple types of agents that interact with each other in different ways, sometimes in 
competition. ABM models emulate real world systems, allowing agents to evolve to the point 
where unexpected behaviors begin to emerge. ABM models can describe systems in a flexible 
way, can use simple rules to model meaningful group behavior, and are useful for capturing 
emergent behavior. Foundational social science research used ABM to understand phenomena 
such as segregation (Schelling, 1971) and voting behavior (Kollman et al., 1992). We refer the 
reader to (De Marchi & Page, 2014) for a survey of relevant studies in political science and to 
(Heath et al., 2009) for a broader analysis of ABM related papers. More recent models will 
incorporate a range of learning techniques within the behavior of the agents, including neural 
networks and different types of reinforcement learning. Bayesian models can be used to 
represent the factors influencing an agent’s decision-making process. Some applications where 
agents-based models have been used successfully include traffic flow management, operational 
risk models, and product adoption dynamics (Sun et al., 2006; Talukdar, 2002; Cowell et al., 
2007). In the context of prescriptive models for social media, ABMs can be used to understand 
how to intervene to increase the spread of high-quality information or decrease the spread of 
poor-quality information. These models are commonly tested through simulation. The limitation 
of these models is that they are customized and therefore can be difficult to create quickly for 
different contexts.  

System dynamics models: While ABMs can be used to model complex systems, other 
system dynamics models also exist. These simulation models focus on mathematically capturing 
the system dynamics, including different feedback loops that are the hallmark of these types of 
models. System dynamics models ignore the details of the system and instead focus on a higher 
level, general representation of the system (see Weisbuch for a more detailed discussion (2018)). 
One approach to this is to model the real world as stocks or entities, flows between stocks, and 
information to make adjustments to the flows. These types of systems dynamics models are used 
extensively within engineering fields and have been used to model health care capacity and 
delivery (Homer & Hirsch, 2011), movement during forced displacement (Anderson et al., 
2007), and physical systems (Ford, 1999). One example uses a system model with different data 
sources including social media to understand forced displacement (Singh et al., 2019). 

 

 



The Future of Quantitative Research in Social Science | 16  

4. Cross-Disciplinary Distinctions in Model Construction  
Section 2 described some general approaches to modeling social media content. This 

section focuses on cross-disciplinary issues that arose during the meeting. We view these issues 
as raising important issues for consideration by those interested in cross-disciplinary research 
and collaboration.  

A first concern for any discussion of model construction is a definition of what exactly 
“modeling” is. There appears to be some general agreement within each discipline about what 
modeling is, but there quite clearly are differences across disciplines. These differences make a 
discussion of model construction complex. However, identifying and considering the differences 
is, in our view, a useful (and also a necessary) step in developing better approaches to model 
construction for social media data. 

Below, we discuss four of the differences in the ways in which social scientists and 
computer scientists approach model construction: (1) differences in what falls into the 
‘modeling’ category, (2) differences in emphasis on inductive versus deductive modeling, and 
(3) differences in models based on quantities for which there is an identifiable ‘ground truth’.  

4.1 What is Modeling? 

For the typical social scientist, a model is used to generate and/or test an hypothesis. Data 
are collected. Measures are developed. And after some recoding and descriptive analyses, the 
analyst presents a model (a regression model, for instance) that explores the relationship between 
X and Y. This does not capture all the various ways in which social scientists think of modeling, 
of course. But the vast majority of social scientific data analyses proceed in this manner. 

Computer scientists are inclined to interpret modeling more broadly. The decisions about 
what to measure are part of modeling. So too are the various mathematical transformations 
needed to produce the variables that eventually find their way into an analysis.  For a computer 
scientist, all of the various decisions that turn raw material into measures and analyses are 
commonly thought of as being part of model construction. While these are parts of model 
construction, computer scientists also place a lot of emphasis on the development and 
optimization of computational models for different descriptive and predictive tasks. 

There clearly are advantages to thinking about modeling using the broader framework 
that is more common in computer science. Social scientists have a strong tradition of examining 
the importance of measurement; and the consequences that result when a single measure of a 
construct is designed in several different ways. However, unlike computer science where 
measurement and modeling are intertwined, the social scientist often designs the measures as 
they relate to data collection and then incorporate these into the models during the analysis stage. 

The importance of decisions related to measurement and prediction are especially clear 
for the analysis of social media data, where the transformation of raw data into usable measures 
requires so many different conceptual and mathematical decisions. Indeed, some measures are 
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quite clearly developed by modeling them, using machine learning for instance. Where social 
media data are concerned, and perhaps more generally as well, there are advantages to including 
the development of measures as part of the process of model construction. What may in fact be 
more important is to recognize that different forms of modeling are taking place throughout the 
social media research process from theoretical models that support different hypotheses to 
predictive models to support data preparation and measurement construction to computational 
models which use changing data to make decisions.   

4.2 Inductive versus Deductive Modeling 

Inductive modeling explores data as a way of developing theory; deductive modeling 
uses models to test existing hypotheses. Both approaches are of obvious importance for social 
scientists and computer scientists alike. But social scientists tend to focus primarily on deductive 
approaches whereas computer scientists are more comfortable using a combination of 
approaches. 

This difference is linked to the differences in ‘modeling’ discussed in the preceding 
subsection – the inclination to view measurement as a component of modeling necessarily 
requires a view of modeling that is at times primarily inductive. Where model construction for 
social media is concerned, we see inductive approaches as being critical. Part of the task of 
researchers in a relatively new field is simply to get a sense of the data, after all. We are only 
beginning to understand what social media data look like and how they can be analyzed. Simple 
descriptive data can be a major contribution to the study of social media; and given the relative 
absence of theory (in comparison to more long-standing areas of social-scientific study, at least) 
the potential for deductive modeling is relatively limited.  

Our argument here is not that there is no theory in analyses of social media; nor is it that 
social media analysis should be exclusively inductive. We nevertheless suspect that social 
scientists may sometimes benefit from an approach that takes more seriously the benefits of 
inductive modeling to better understand social media content. (Though we note that computer 
scientists may benefit from considering the importance of deductive, theory-oriented modeling as 
well; see, e.g., Lundberg et al., 2021.) 

4.3 What is the ‘Ground Truth’? 

There are differences in approaches to model construction for quantities in which there is 
or is not a ‘ground truth.’ Consider first a machine-learning algorithm or dictionary designed to 
identify instances of sarcasm in social media. There is a ‘ground truth’ in this instance – whether 
or not the post was intended to be sarcastic. Modeling sarcasm can consequently proceed with an 
aim of reliably identifying that ground truth. Where the post was intentionally sarcastic, our 
model should identify that sarcasm. Where the post was not intended to be sarcastic, our model 
should not identify sarcasm.  Any difference between our estimation and the ‘ground truth’ 
represents a failure in our model. (It is of course very hard to identify sarcasm in social media 
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using any automated system, at least partially due to the difficulty of gathering unbiased training 
data (Bamman & Smith, 2015).) 

What if we want to identify whether a post is funny or not, or contains offensive 
language? This is more complex, because funny (or offensive) is not just about the intention of 
the person who posted, but also about audience members’ interpretation of the post. And 
individuals will invariably disagree on which posts are funny and which are not. There may be 
an audience average for how funny a post is, but even that will vary across audiences. There is 
no ‘ground truth.’  And there is, as a consequence, no clear indication of whether the defined 
measure is correct. 

Many researchers are used to working with data for which there is no ground truth – 
consider survey questions that capture attitudes that are evident only because we have asked the 
survey question, for instance. This kind of data makes for a very different approach to model 
construction, however. Where ‘ground truths’ are readily available, the task of model 
construction is to approximate that ground truth. Where ground truths are not available (such as, 
for instance, in sentiment coding, where the sentiment of text is often subjective), model 
construction must depend on strong theory and/or indications of concurrent validity, perhaps 
through a quantity or set of mathematical quantities that can be used to identify what should be 
expected.  

5. Issues that Apply Across Models  
Another way to look at challenges is to consider those that are applicable to many models 

in both social and computational science -- common difficulties, rather than cross-disciplinary 
differences. In this section, we highlight some of the common challenges that were prominent in 
our meetings. 

5.1 Correctly Identifying the True Purpose of Modeling 

It is common practice to map a particular research question to a category of an 
analysis/modeling family. A big part of the research process is to take a high-level question and 
formulate it into a set of measurable constructs. This process, when carried out carelessly—as it 
often is—can lead the researcher to misclassify the question at hand. 

One of the most common misclassifications relate to predictive vs. explanatory. 
Predictive approaches are typically employed within computer science. For example, a computer 
scientist may build a model to predict the weather or the topic of discussion. Even if these 
models are set up to provide longitudinal estimates of an outcome, they do not inherently capture 
causal relationships. If the actual goal of the researcher is to identify causal relationships, such an 
approach is likely to fail since the goal is about the prediction (the what), not the explanation (the 
why). Yet, predictive models are used for explanation in various social science settings 
(Lundberg et al., 2021). Delineating the intended purposes of a forecasting model, which is 
understandably hard, can provide clues as to whether causal modeling needs to be a part of the 
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predictive approach. Approaches from the causal inference literature that allow capturing these 
relationships may be incorporated. It is important to note the following: not every question needs 
to involve an explanatory model. For instance, consider the policy of whether an individual 
leaving home should be handed an umbrella. A good policy here needs to simply reliably predict 
whether it will rain that day. This provides a simple categorization of problems into “β-
problems” (the focus on the regression coefficients, more common in social science) and the “Ŷ 
problems” (the focus on the actual prediction, more common in machine learning). The umbrella 
case is an example of a Ŷ problem. 

Another example of misclassification happens between predictive and prescriptive 
approaches. Take, for instance, the example of predicting leading indicators of toxicity on social 
media. While this can be seen as a predictive, or even an explanatory, analysis at the surface, the 
goal of the researcher/policymaker/platform is rarely just to predict/understand. In reality, the 
true goal is likely closer to determining the factors that can be used to develop an intervention 
strategy for reducing toxicity. In short, we too often are asking predictive questions while the 
true goal is prescriptive. A more bold version of this claim goes as follows: the goal of a model is 
almost never to simply predict. Somebody will take an action based on those predictions. This 
mind shift can lead the researchers to more carefully consider the quality of their predictions and 
how the accuracy of these predictions would impact the actions taken. This has ethical 
implications, as well as practical ones. 

5.2 Time and Modeling 

Social media data are not a monolith. Neither do they exist in a vacuum. As we 
appropriate social media data for all sorts of models, the question is -- what are we capturing and 
what are we missing? How does that change over time, as platform politics, norms, users, and the 
broader social contexts (e.g. real-world crisis events) evolve? Implied in all these questions is the 
importance of time. Time plays an important role in modeling. Researchers should 1) carefully 
construct their time scales, 2) assess IID (independent and identically distributed) assumptions, 
and 3) quantify and mitigate the impact of drift. 

Carefully constructing time scales: There are also issues of detection of important 
phenomena that we want to predict without having paid any prior attention to preceding factors 
that might have explained or predicted it. An event occurs that requires (in an intellectual or 
scientific way) an explanation. How far back in the social media data file do we go to look for 
explanations? Should the model place a premium on as much advance notice as possible? Or 
should the emphasis be on the level of accuracy in prediction irrespective of the preceding time 
period, i.e. only short advance notice? This may be another way of describing the evaluation of 
models in terms of “fit for purpose.” 

Assessing IID assumptions: The assumption of independent and identically distributed 
(IID) random variables is not always reasonable in the analysis of social media data. Take for 
instance a text classifier for detecting misinformation based on hand-crafted features (e.g., word 
lists) or “neural” features based on distributed representations of words. Classical machine 
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learning models generally treat each data point as IID. However, in a world where social media 
users learn from each other and real-world events dictate their behavior, IID assumptions can be 
unrealistic. This makes time series analysis an important tool in the researcher toolbox. 

Algorithmic drift: Trained models can get stale over time for various reasons. 
Algorithmic or concept drift occurs when the relationships in the underlying data change, thereby 
degrading the performance of the predictive model. For instance, social media norms continually 
change, making language detected by a language model obsolete. Important social media users 
might leave the platform, significantly changing the dynamics of influence modeled through 
network models. Or, the platform can take action to change its design or blacklist large groups of 
users. Algorithmic drift can also happen because of changes occurring in the real world. How 
can researchers handle these issues? First, it is crucial to continually test models to check for 
drift. Furthermore, it is desirable to build models that keep learning and have a feedback loop. 
Online learning techniques are commonly used in these circumstances (Hoi et al., 2018). 

5.3 Error in Variables 

All quantities derived from social media include error. Some of this error is systematic, a 
product of sampling bias (e.g., a sample that is too liberal or conservative) or variable 
specification (e.g., a positively-biased measure of sentiment). Dealing with systematic error 
typically requires a careful consideration of sampling and measurement issues. This is a common 
component of good social scientific research on social media. 

Dealing with the random error in social media-derived measures and models is a much 
less frequent feature of social media analysis, particularly (although not exclusively) in the social 
sciences. Indeed, uncertainties in measures derived from social media are rarely well understood, 
and as a consequence many measures are treated as absolute values rather than stochastic 
quantities. This can lead to incorrect results from modeling, including attenuated bias (where a 
relationship is biased towards zero). 

There are approaches to modeling that take this issue into account, including techniques 
for the ‘propagation of error,’ bootstrapping, and errors-in-variables models (Mooney, 1996; Van 
Huffel & Lemmerling, 2013). None are currently regular features of social-media-focused 
modeling exercises; all should be considered as ways of improving models of social media.    

6. Case Studies - Putting Models to Work 
How might all of this work in practice? We have thus far been writing about modeling 

social media data in very general terms. Here we make those generalities a little more concrete in 
a hypothetical case study. 

The goal of our hypothetical study is to better understand the proliferation of both correct 
and false information about Covid-19 vaccinations. We begin with some general modeling 
challenges (from Section 2). We must get access to a sufficient body of content – enough to 
provide a credible account of the circulation of information about Covid-19; and we must be able 
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to identify Covid-19 content based on some relatively simple processing of natural language. The 
Covid-19 case has some distinct advantages: it is likely that the bulk of Covid-19 content can be 
identified with a very simple set of keywords; and we need only track that content from January 
2020. The limited time frame reduces concerns about change in language over a long period of 
time; it also likely means that we have a manageable body of data as well.  Our interest may be 
in social media generally, but we are faced with a dilemma: Facebook is used by a larger 
proportion of the public than Twitter, but Facebook content is typically more difficult to gather 
than Twitter content. Again, in this unique case, researchers can get access to these data either 
through different companies or through open collaborations that exist related to the pandemic 
(Banda et al., 2020; Facebook, 2021). Both data sources likely provide some measures of 
engagement (likes, re-posts) that may be central to our analysis. Our platform selection thus 
hinges on our research question – not just whether it is focused on one platform or another, but 
whether it requires data that may be more or less accessible in one platform or another, or 
whether it is important to look at data on multiple platforms simultaneously. 

Note that we are already engaging in modeling, broadly construed. The moment we begin 
to make choices about how to identify which posts are relevant to our study, we begin to build a 
‘model’ of the proliferation of Covid-19 vaccination information.  What is the goal of that 
model? As Section 3 has outlined, we can categorize models into four different types. A 
descriptive model could seek to answer the question, what is ‘virality’ of correct versus false 
information about Covid-19 vaccinations? Even this relatively prosaic task requires some 
complex models. We must identify relevant content, and then build a model that identifies 
correct versus false information. We might accomplish this through clustering, or topic 
modeling, or anomaly detection. We might even rely on a dictionary search, which itself is 
another type of (very simple) model. Having captured the frequency (number of posts) and 
proliferation (number of likes and/or re-posts) of correct versus false posts, we are in a position 
to provide descriptive information about the virality of correct and false information about 
Covid-19 vaccinations. 

A predictive model might seek to answer a more ambitious question, can we predict the 
virality of a given post about Covid-19 vaccinations? In this instance we need many of the same 
quantities as above – we need models that identify relevant content, and that identify both correct 
and false information about vaccinations. But rather than simply describing the frequency of 
correct and false information, we need to try to use other features of social posts (or social media 
users) that can predict the number of likes or re-posts that a given post might receive. The 
popularity of the user surely matters. So too might other words, pictures or videos in the post. 
We might try to use words to predict the number of likes with a regression model. The outcome 
in this instance is a model that can predict, based on the content of a given post alongside other 
factors, the likely virality that post will achieve. Or we might consider the task of labeling 
whether or not a post about a vaccine has accurate or false information in it. This could be done 
using classic machine learning models like random forest or support vector machines. However, 
given the subtlety of this task and the important role of language, a better approach might be to 
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use state-of-the-art language models (e.g. BERT) to increase accuracy, especially if we have 
limited labeled data. We might alternatively use some posts to predict the popularity of other 
posts through classification by decision trees, logistical regression, etc.  

A diagnostic/explanatory approach is not fundamentally different from a prescriptive 
approach, as explained in Section 3. The difference here lies mainly in the target of our analysis: 
do we aim to make good predictions of virality (predictive), or do we aim to understand the 
various drivers of virality (explanatory)?  Again, regression and classifiers are the modeling tools 
of choice. Rather than looking at the outcomes, however, we focus primarily on the drivers. To 
what extent does user popularity matter, versus the inclusion of photos, versus the use of 
inflammatory language, and so on. This is the main objective of an explanatory model. 

Prescriptive models have their sights set on a more distant target. Again, we need to 
model the identification and categorization of relevant content. We also likely need to do much 
of what is necessary for an explanatory or predictive task. But our question is now something 
like: What can we do to increase the virality of correct information about vaccinations? So we 
now take the information learned from an explanatory model and attempt to extend that 
outwards, through, for instance, reinforcement learning broadly, or agent-based models or 
systems dynamics models more specifically. An explanatory model can help us see the factors 
that seem to increase virality; these prescriptive models offer a more complete account of what 
social media content about vaccinations might look like under different conditions (premised, 
presumably, on what we have learned in an explanatory model). 

The kind of model(s) we require is thus fundamentally linked to the kind of questions we 
want to ask. Our approach will be further refined by some of the considerations discussed in 
Section 4. Is there already a good body of theory that predicts the virality of correct and false 
information about vaccinations? To the extent that theories have already been developed, our 
approach may test those theories through primarily deductive modeling exercises. We might test 
whether virality is driven by emotion-laden language, for instance. If existing theory is lacking, 
then taking an inductive approach will be necessary – and may be preferable even if good theory 
exists insofar as inductive models may turn up other not yet understood drivers of virality.  

Is there a ‘ground truth’ where our models and measures are concerned? In this 
hypothetical example, some information is factually correct, and some information is not. Fact 
checkers can be helpful in this context. But there will be gray areas, posts in which information 
is partly true and partly false, and these instances may produce some complexities for the 
modeling exercise. Indeed, there seems to be limited agreement on which sources produce false 
information (Bozarth et al., 2020). Concerns raised in Section 5, including algorithmic drift and 
errors in variables will also be relevant in this context. The selection of models must thus always 
be concerned not just with the availability of data and type of research question (descriptive or 
otherwise), but with the ways in which measurement validity can be maximized and error – in 
many different forms – can be minimized. 
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7. Modeling Ethics and Algorithmic Bias 
The previous sections highlight different possibilities for error and bias to arise. In the 

end, one central question is whether the results of an analysis or the inferences drawn from it are 
biased. There was clear agreement that all models have some form of bias. Where there was 
disagreement was the type of bias that different researchers focused on in their research.  Is the 
bias a result of a social construct of interest? Is the bias a result of the population under 
examination not being representative of the population to which the results will be generalized? 
Is the bias a form of inductive bias that results from a particular statistical or machine learning 
model being used? Bias can influence every aspect of an inferential task. The formulation of the 
research question can be biased, data can be biased, the formulation of models can be biased, 
estimation procedure may be biased, and interpretation may be biased. These biases may also be 
connected to each other.  For example, in psychology, researchers often tailor models to specific 
demographics (e.g., the middle class). Their theories may be also biased by the units from which 
they can collect data - how well can researchers infer effects observed in a student population to 
the general public?  In medicine, clinical trials are typically randomized controlled experiments, 
reducing one form of bias. However, clinical trials are almost always biased by the groups that 
researchers can recruit to participate in the studies, which biases the predictions on the unstudied 
groups. This has enormous implications for trust, as we see right now with vaccines. 

In the context of machine learning model creation, bias can emerge in different ways: 
bias during feature generation, bias within the training data, bias within existing external data 
sources that are used by a machine learning algorithms, e.g. dictionaries or word embeddings, 
and bias within the algorithm that may cause overfitting of subsets of the data---to name a few. 
Machine learning models require training data. Training data is a sample of data used to build a 
mathematical model for prediction. This training data is expected to be representative of the 
population of interest. If the model is designed to predict political affiliation, the training data 
needs to (1) have a reasonable sample of people who have different political affiliations in terms 
of sample size and political affiliation distribution, (2) have a reasonable sample of people who 
have different demographic characteristics within the different political affiliations, and (3) be a 
sufficient size sample. Machine learning algorithms typically optimize for classification or 
prediction accuracy. Therefore, if the training data is too small or some form of selection bias 
exists, the algorithm will “learn” that bias and propagate it. A classic example of this is the 
Amazon AI Recruiting tool that was designed to identify applicants for interviews. Because the 
training data consisted of existing employees, and the existing employees were overwhelmingly 
male, the AI tool discriminated against female applicants by making predictions using features 
that were highly correlated to gender (Dastin, 2018). This is an example of a historical bias that 
does not reflect current societal goals. Other examples include recidivism prediction with a high 
false positive rate for black people relative to white people (Angwin et al., 2016), facial 
recognition software mislabeling people with darker skin tones (Buolamwini & Gebru, 2018), 
and racial disparities in automated speech recognition (Koenecke et al., 2020). 
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While bias in artificial intelligence has been an area of study for decades, fairness in 
machine learning is a new sub-area focusing on measuring algorithmic fairness and addressing 
different types of inequities (Mehrabi et al., 2019).  Many different definitions of fairness have 
emerged. The ones that are being used more extensively within the computer science community 
include: unawareness, demographic parity, equalized odds, and individual fairness 
(Chouldechova & Roth, 2018). Unawareness requires that sensitive attributes are removed from 
the training data. While a good first step, it does not address the issue of correlates of sensitive 
attributes existing in the data, as in the Amazon example above. These correlates could still be 
used to discriminate against protected groups. Demographic parity and equalized odds are 
metrics that capture notions of group level fairness, with demographic parity capturing 
independence between the output and the sensitive variables (protected and unprotected groups 
should have close to equal representation) (Zafar et al., 2017), and a classifier satisfies equalized 
odds if every individual in the protected and unprotected group have equal odds of being in the 
true positive rate and in the false positive rate (McNamara, 2019). Finally, individual fairness 
focuses on measuring a desired trait in a way that ensures that similar individuals are treated 
similarly by the algorithm. All of these measures have drawbacks, but they are the building 
blocks to quantifying unfair treatment of groups of people by algorithms. These different 
definitions of fairness can also be in conflict with other societal goals, leading to theoretical 
limitations on our ability to address all of them (Corbett-Davies et al., 2017).  Work on 
correcting for algorithmic biases is emerging, but it is still in its infancy. The general approaches 
that are being used attempt to create intermediate, transformed versions of the data that are 
beneficial to the learning task, but that remove information about sensitive attributes. In order to 
correct model bias, regularization techniques are being used more extensively within machine 
learning models. Also, for some learning tasks, post-processing of learning results can be done to 
reduce bias and improve fairness. 

Finally, we note that there is a tradeoff between bias and variance. Bias can occur when 
our model is too simple and “underfits” the data (Vapnik, 1998; German et al., 1992). In this 
scenario, bias will be high and variance will be low. On the other hand, if our model is very 
complicated with a large number of parameters, it may “overfit” the data. In this case, the bias 
will be much lower, but the variance will be high, i.e., if we repeat model construction on new 
data drawn similarly to the original data, and we do this many times, we will see a lot of 
variation in the results across trials. In other words, there is a tradeoff between bias and variance 
associated with a model and researchers need to evaluate the bias-variance tradeoff curves for 
different models to understand the impact on their findings.   

8. Accelerating Research in this Area 
This section focuses on identifying different resources that would be useful to help 

accelerate research for social scientists and computer scientists. We focus on those components 
that meeting participants thought would be particularly useful with regards to modeling.  
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The first group of ideas centers around construction of labeled data sets. In order to use 
social media effectively for empirical studies, more labeled data sets that are useful for social 
science research, e.g. demographics, stance, topics, etc., need to be created, shared, and 
documented. While a number of data repositories and data sharing platforms exist, there is no 
central repository curated for different social media data sets. Two sharing archives that have 
emerged as important data sharing platforms across disciplines are the Harvard Dataverse Project 
(https://dataverse.org/) and Google Data Commons Project (https://datacommons.org/).  Either of 
those could be leveraged for social media data sets. The other important reason for making data 
available is to demonstrate how to use different models and algorithms. Because of the 
complexities of social media data sets, showing the strengths and limitations of different models 
using these data is important for accelerating research in this arena. When does an algorithm 
work as expected? When does it not? These questions can only be answered through examination 
of models across data sets. 

The second group of ideas focuses on developing standards for measuring the quality of 
the data and the model. Examples include standards for assessing reliability and validity of data 
(see Measurement white paper (Ladd et al., 2020)), having standard sensitivity analyses for 
learning and statistical models, and requiring fairness measures on models that involve human 
subjects. Establishing criteria for different classification and learning tasks that will use social 
media data is important to standardize and advance research across disciplines.  

 

The third group of ideas focuses on products that would help researchers better 
understand the population participating in conversations on social media. We know that social 
media are a machine/human hybrid and we do not know the distribution of each on different 
platforms. We know that there are different distributions of humans that use these platforms and 
that their activity level varies based on demographic characteristics. However, we cannot capture 
this information. If we can work with platforms to get these distributions, we would be able to 
produce higher quality research. 

The fourth group centers on the differences in expectations of publishable work. 
Computer scientists publish new methods for different descriptive and predictive tasks. They 
also publish results that are prescriptive based on using complex predictive models that explore 
different spaces of correlations and relationships among, possibly, a large number of features. 
Social scientists test explicit hypotheses generated from existing theory, and are less likely to 
publish exploratory analyses. The crux of the problem being described is that what is considered 
to be valuable for each of our communities is not the same. Therefore, interdisciplinary research 
is not just about learning each other's approaches to research, it is also about publishing different 
work that may not be considered as valuable in one’s home research area. In order for this type 
of deep work to take place, it is important that new interdisciplinary journals emerge and that 
contributions across disciplines are considered important endeavors for junior faculty.  
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The final group of ideas focus on the development of standards for understanding 
measurement quality and error. Having techniques for measuring and aggregating sampling, 
measurement, and modeling error and understanding acceptable error propagation levels would 
help accelerate the use of social media data. Developing standard checks for testing sensitivity of 
research conclusions to modeling decisions would also help social scientists consider using these 
data. There are a number of sensitivity checks for machine learning models. They vary for 
different machine learning models. Identifying the ones that map best to ideas of reliability and 
validity in social science is an important for accelerating social science research involving social 
media data.   

9.  Conclusions 
Social media research attracts researchers from various backgrounds who bring different 

perspectives, methods, and research questions to this new field. The models they use and exactly 
how they use them have important implications for how well these research questions are 
addressed. In short, model construction is an integral part of social media research and its 
strengths and weaknesses need to be well-understood. To this end, this white paper aimed to 
summarize model types and how they are used in social media research. We provided an 
overview of commonalities and distinctions between fields in how they approach modeling. 

Focusing on the distinctions first, our cross-disciplinary conversations revealed a 
fundamental difference in how computer and social scientists conceptualize modeling as well as 
how they use it. Most commonly, social scientists conceptualize modeling as the part of the 
research process where a researcher applies a mathematical formulation of a theoretical model to 
understand the relationship between some independent and dependent variables. For a computer 
scientist, all of the various decisions that turn raw material into measures and analyses are 
commonly thought of as being part of model construction. As a result, computer scientists also 
place a lot of emphasis on the development and optimization of computational models for 
different descriptive and learning tasks. 

The second important distinction relates to the purpose of modeling. While prediction is 
commonly the end goal for a computer scientist, it is rarely the end goal for a social scientist, 
who typically has a stronger focus on explanations. This affects various stages of the modeling 
process. There are two important steps we highlight: model construction and validation. For the 
model construction step, we observe a higher level of comfort with inductive modeling for 
computer scientists and deductive modeling for social scientists. Over-reliance on either 
approach can be seen as a potential point of improvement for both perspectives. There are cases 
where theory should dictate the model, and cases where existing theory is lagging so letting the 
data speak can open new doors. This is where we think convergence in thinking will benefit all 
disciplines. 

The distinctions are obvious in the model validation as well. For instance, computer 
scientists are generally comfortable defining and relying on “ground truth” data to assess the 
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quality of their predictive models. Given labeled data and clear performance measures, computer 
scientists are often comfortable assessing a model according to its ability to predict that “ground 
truth.” Cross-disciplinary discussions revealed an important point of convergence here. For many 
social science quantities, there is no “ground truth”, but rather a concept that is being measured. 
And computer scientists ought to be more skeptical of the “ground truth” data they use to assess 
their models. These relate to important concepts such as construct validity, and data sampling 
biases that we covered in previous white papers. Conversations also reveal a whole new way to 
assess models that are generally ignored by social scientists (e.g. the ability of the model to 
predict future behavior) and these methods can be explored not as a substitution but perhaps a 
complement to current approaches used in social sciences. 

Despite these distinctions, approaches to modeling are not completely distinct. There are 
important issues that apply across all disciplines. One of these relates to the purpose of modeling. 
Not carefully thinking through this question will end up in important unintended consequences, 
ranging from a model that is not properly evaluated to a model that is used for goals not aligned 
with researchers’ goals, or even ethics. We list this as a common problem across disciplines 
based on our discussions in a mixed group of social and computer scientists, revealing an 
important need to focus attention on this issue across all fields. As researchers, it is our 
responsibility to construct models that help humanity and the societies in which we are 
embedded. Thinking through what each model succeeds in doing, and more importantly thinking 
through what it does not, are crucial for achieving that goal. 

Other common issues were revealed; while not unique to social media, they are certainly 
critical in this context. For instance, given the fast pace with which things change on social 
media, models need to account for time, algorithmic drift, as well as issues of algorithmic bias 
and model fairness. Similarly, given how platforms shape behavior, it is important to account for 
the platform effects and study behavior across different platforms. Furthermore, social media 
present to us found data, where variables are not as carefully constructed. Uncertainties in 
measures derived from social media are rarely well understood. We suggest that more emphasis 
needs to be paid to these errors to improve modeling endeavors involving social media data. 
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